CSF SHUNTS GONE BAD! Brad Sobolewski, MD, MEd

Hydrocephalus

Hydrocephalus

Imbalance of absorption and production of CSF

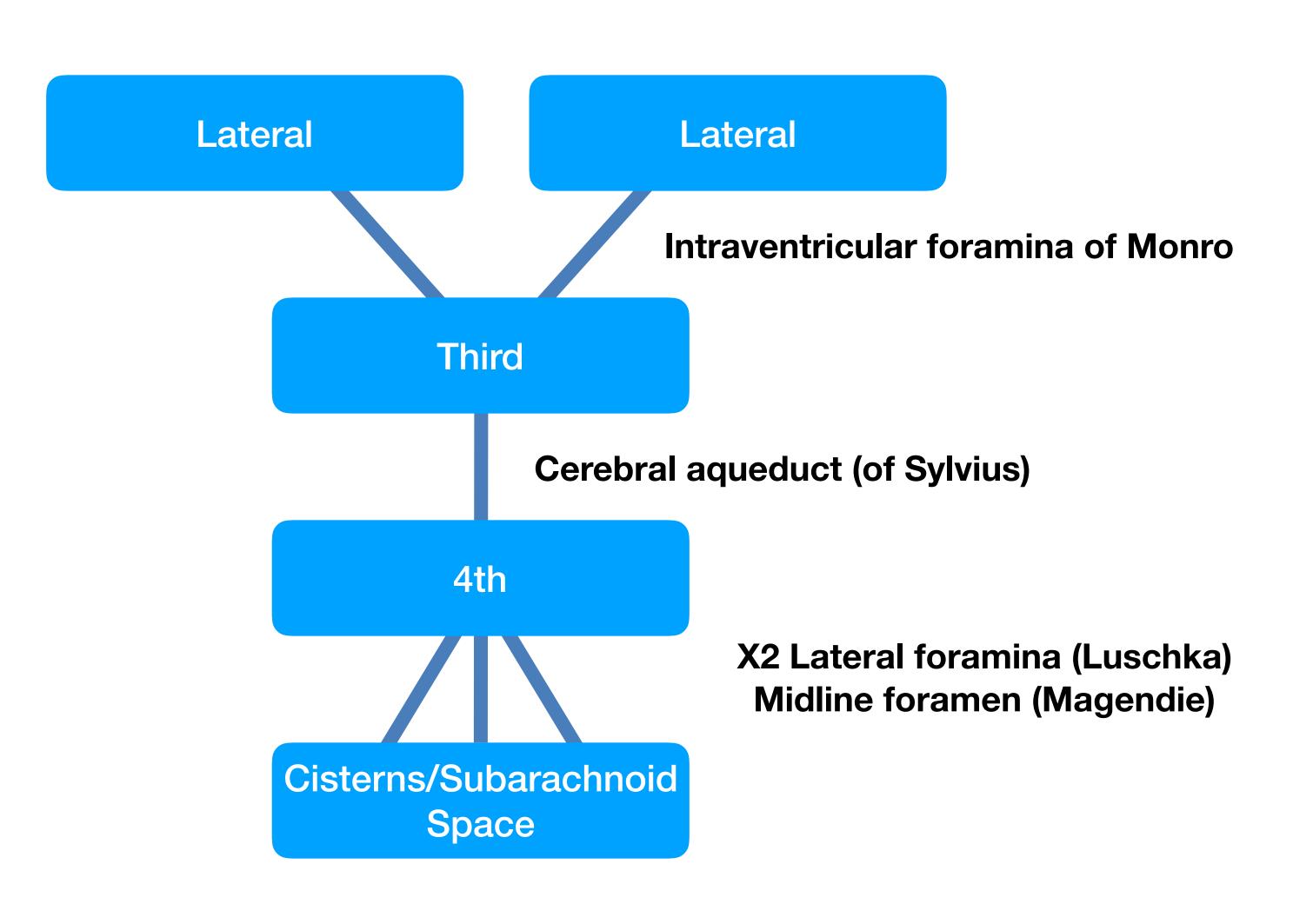
Estimated incidence of 1/500-1000 children

125,000 + shunts

production

Either due to obstruction of CSF outflow, impaired reabsorption or excess

Obstructive hydrocephalus


The ventricular system is blocked and CSF accumulates proximal to the blockage

Communicating hydrocephalus

The subarachnoid system is blocked and CSF can't be absorbed

The entire system fills with CSF

This is less common and due to IVH, Meningitis, Post-inflammatory scarring

Etiology

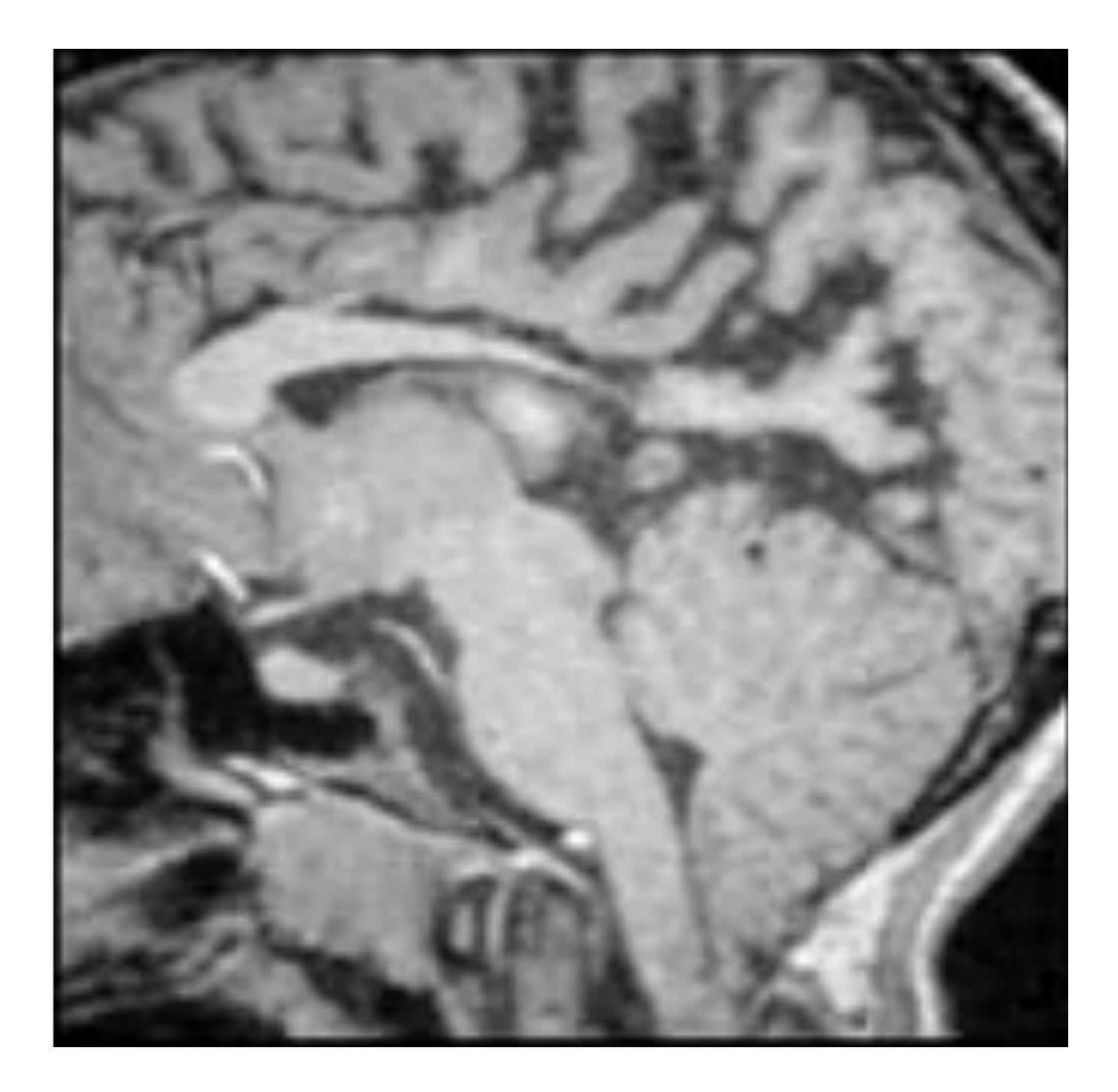
Congenital

infection: Rubella, CMV, Toxo, Syphilis

X-Linked hydrocephalus stenosis of aqueduct of Sylvius

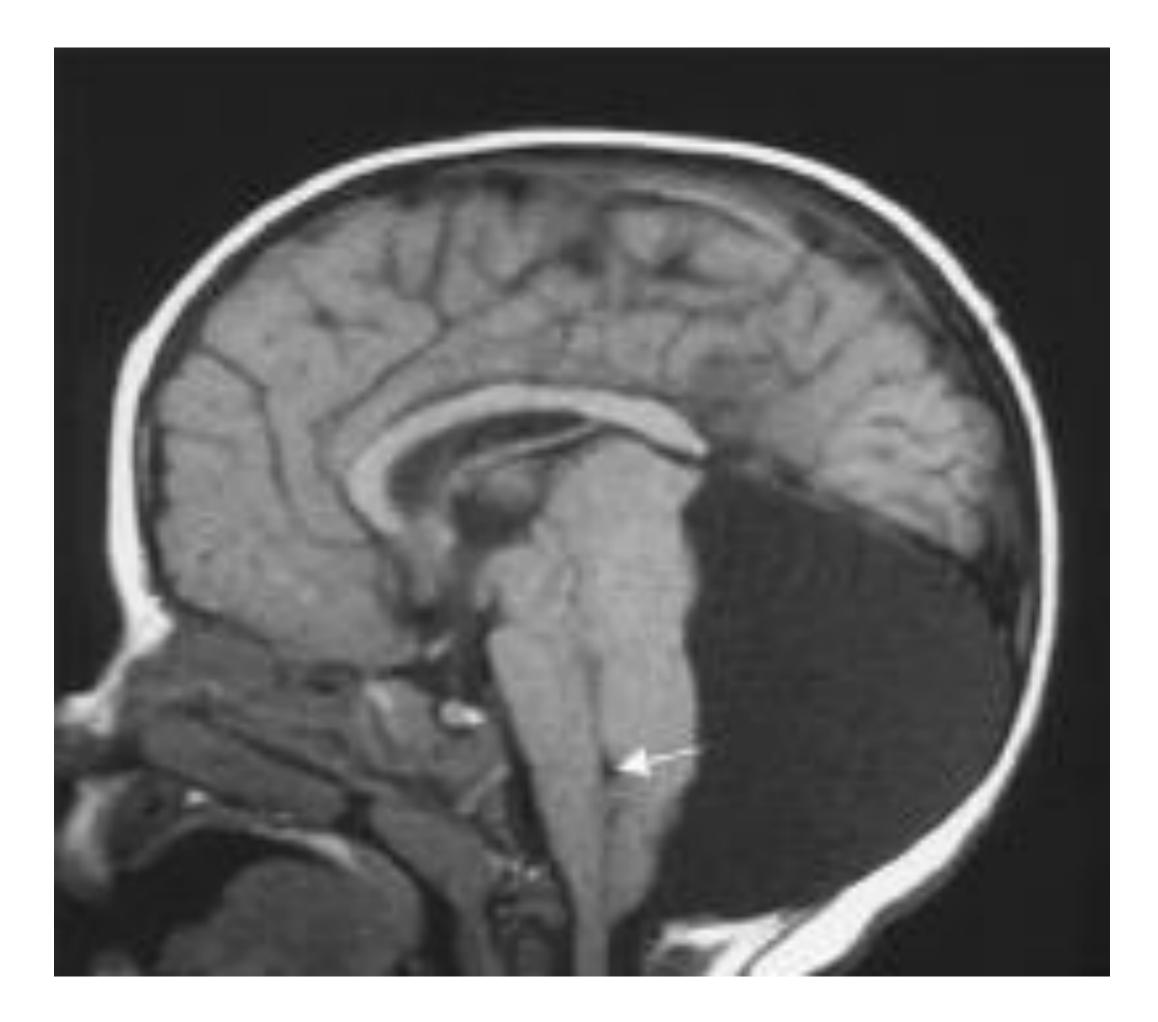
Acquired

Infection, trauma, tumors, head bleeds


Neural tube defects:

Associated with Chiari or aqueductal stenosis. Linked to teratogens and deficiency of folate.

Isolated


aqueductal stenosis (inflammation d/t intrauterine infection)

Chiari II Often accompanies NTD

Brainstem and Cerebellum are displaced caudally

Dandy Walker Large posterior fossa cyst continuous with 4th ventricle

Abnormal cerebellar development

Hydrocephalus in 70-90%

Presenting symptoms of hydrocephalus

Headache

Vomiting: increased ICP in the posterior fossa

Behavioral changes

Drowsiness: midbrain/brainstem dysfunction

Visual changes: Optic Nerve compression

Incoordination

Loss of developmental milestones

Head circumference increases rapidly

"Sunsetting" eyes: fixed downward gaze

Shunts

Proximal portion is placed in a ventricle (usually the right)

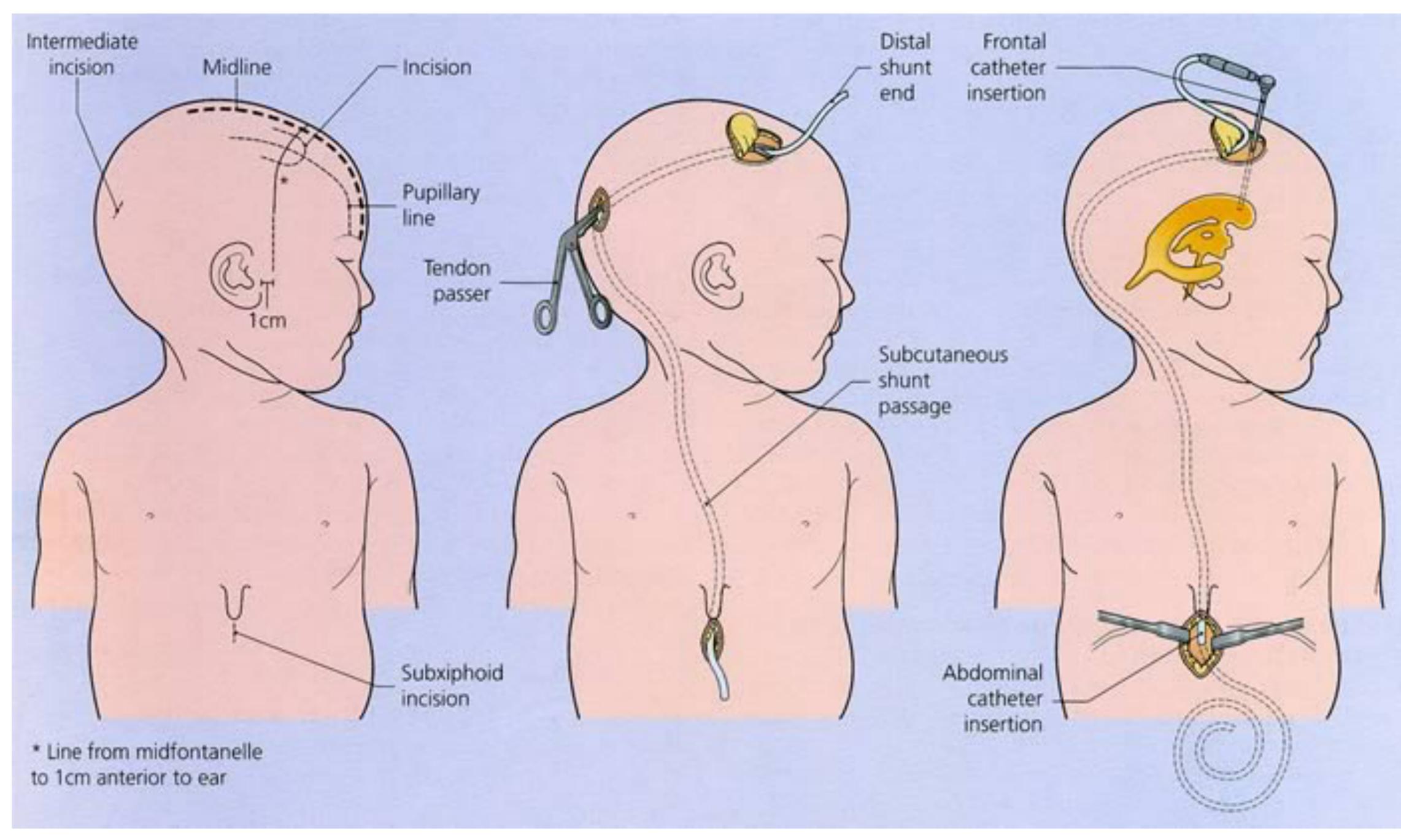
Could also be in an intracranial cyst or lumbar subarachnoid space

Distal portion

Internalized: peritoneum, pleura, atrium

Externalized

EVD: Acute hydrocephalus for pressure monitoring, infected shunt


Shunt devices

- Ommaya reservoir: Generally for administration of drugs (antibiotics or chemo)

Distal Catheter

Ventricular Catheter

Flow-regulated valves • Delta Chamber opens for free flow if ICP high • Elastomer diaphragm mechanism • 0.5, 1.0, 1.5, 2.0, 2.5 levels available

- Medtronic
- · First flow-regulated valve
- Three stage variable resistance mechanism
- Magnet neutral/MRI safe
- Integra

Strata

- Ball/spring mechanism with magnet
- Programmable/noninvasive
- Incorporated Delta chamber
- Medtronic

Programmable pressure valves

- Codman Hakim
- Noninvasive programs among 18 preset levels
- Ball/spring mechanism
- Codman (Johnson and Johnson) Company

Sophy

- First adjustable valve
- Siliconecoated
- polycarbonate chamber
- Ball-cone mechanism with variable pressure spring
- Sophysa.

Polaris

- MRI compatible variable valve
- Self-locking magnetic system
- Sophysa

Infection

Malfunction

Over drainage

Under drainage

Subdural hematoma

Multiloculated hydrocephalus

Seizures

Complications

Shunt Infections

5-15% overall risk

Fever is variably present, and meningeal signs are not correlative

Ventriculoperitoneal shunt infections can also present with GI Sx/ peritonitis

VA shunts with endocarditis

Shunt infections are more likely in the first month after placement

Risk factors

Younger age

Previous shunt infection

Certain causes of hydrocephalus (more likely after purulent meningitis, hemorrhage, or myelomeningocele)

Shunt revision - especially ≥ 3 revisions

Risk factors

- Less experienced neurosurgeon
- More people in the OR
- Use of a neuroendoscope
- Longer duration of the shunt procedure
- body
- Skin preparation/shaving of skin

Infection

For VA shunts insertion of the catheter below T7 vertebral

EXternal VentriculaEVD10.6 infections peBisk greatest if in

- External Ventricular Drain risk is up to 1 in 5
- 10.6 infections per 1000 catheter days
- Risk greatest if in place >5 days

Usually due to skin flora or more rarely hematogenous spread 50% Coag negative Staph - ¹/₃ of Staph is Staph aureus

- Cutibacterium [FKA Propionibacterium] acnes and Corynebacterium jeikeium

Most come from the proximal end Distal site infections are a result of contamination from peritonitis Gram negatives, Pseudomonas, Streptococci, anaerobes are rare in kids

Diagnosis requires an organism cultured from the CSF

OR

>1 year of age ≥ 2 of...

Fever, headache, meningeal signs, or cranial nerve signs

\leq 1 year of age: \geq 2 of...

Fever >38°C or hypothermia <36°C, apnea, bradycardia, or irritability **and** at \geq 1 of...

- •Organisms seen on a CSF Gram stain
- •Organisms cultured from the blood
- •Positive nonculture diagnostic test from the CSF, blood, or urine

nfection

Increased CSF white blood cell count, elevated CSF protein, and decreased CSF glucose

CSF is better obtained via shunt tap CT or MRI should be performed Abdominal U/S if the child has GI Sx (looking for pseudocyst)

Treatment

Device removal and external drainage for \geq 48 hours

Parenteral antibiotics for 10-14 days

Empiric Vanc + cefotaxime/ceftriaxone

Infection

Device removal and external drainage with replacement once CSF is sterile

Shunt Malfunctions

Shunt malfunctions are usually due to mechanical failure

Majority of 1st failures are due to **obstruction at the ventricular catheter** Shunt over drains Ventricles shrink Tip gets clogged against choroid plexus

Other causes include shunt migration and excessive CSF drainage

15% due to fractured tubing

Nafunction

Shunt malfunctions need to be recognized quickly and managed in the operating room

Median survival of a shunt (before need for revision) \leq 2 years old = 2 years \geq 2 years old = 8 to 10 years

A decision rule was developed - Peds Emerg Care, 2008

Sign/Symptom

Bulging fontanel

Irritability

Nausea/Vomiting

Accelerated head

Headache

Malfunction

+LR	-LR
44.6	1.84
13.7	1.75
11.1	1.58
6.02	1.86
4.28	1.22

Children with a shunt malfunction were less likely to present with...

- Fever
- Seizure

History of multiple prior revisions wa malfunction

Malfunction

History of multiple prior revisions was also associated with risk for shunt

Validation of the previous decision rule

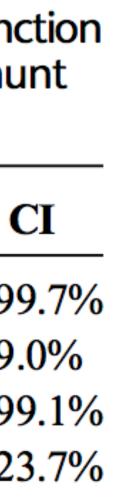
146/755 ED visits for 294 kids had a shunt malfunction (19%; 95% CI, 17%–22%)

Children with a ventricular shunt malfunction were more likely to present with...

- Headache
- Nausea and/or vomiting
- Bradycardia
- Mental status change

Nafunction

Boyle et al. Pediatric Emerg Care, 2017


TABLE 1. Comparison of Patient Visits Where Ventricular Shunt Malfunction Was Present or Absent

Ventricu

De	emographics
Ag	ge (y)*
M	ale sex
Hi	storical features
Ag	ge at initial ventricular shunt insertion (mo)*
No	o. previous revisions
	None/1
	2 or more
Tiı	me from insertion or last revision (mo)*
He	eadache
Na	ausea and/or vomiting
Se	izure
Ph	sical examination
Te	mperature ≥38.0°C
He	eart rate below age-based normal range
Sy	stolic blood pressure above age-based normal range
Ał	onormal pupils
M	ental status change
Pa	in or swelling over shunt
Di	agnostic imaging
No	one
Im	aging
	Cranial CT
	Rapid cranial MRI
	Other
EI	D disposition
Di	scharge
Ad	Imission
	Operating room (first ED encounter)
	*Median (interquartile range).
	[†] Fisher exact test.

cular Shunt Malfunction n/N (%) N = 146	No Ventricular Shunt Malfunction n/N (%) N = 609	Р	
12.1 (8.2–15.8)	9.4 (5.4–15.1)	< 0.001	
93/146 (64%)	334/609 (55%)	0.053	
2 (0.5–13.5)	3 (0.75–12)	0.373	
42/146 (29%)	284/608 (47%)	< 0.001	
104/146 (71%)	324/608 (53%)		
7.9 (1.1–39.6)	16.9 (3.8–39.8)	0.008	
107/125 (86%)	358/470 (76%)	0.023	
96/141 (68%)	336/589 (57%)	0.017	
13/146 (9%)	98/609 (16%)	0.028	
10/146 (7%)	128/609 (21%)	<0.001	
19/146 (13%)	17/607 (3%)	< 0.001	
9/146 (6%)	48/606 (8%)	0.472	
4/142 (3%)	8/584 (1%)	0.264	
59/146 (40%)	184/609 (30%)	0.018	
16/80 (20%)	65/360 (18%)	0.685	
3/146 (2%)	29/609 (5%)	0.145	
70/146 (48%)	267/609 (44%)		
71/146 (49%)	293/609 (48%)		
2/146 (1.4%)	20/609 (3.3%)		
3/146 (2%)	300/609 (49%)	<0.001	
143/146 (98%)	309/609 (51%)		
106/143 (74%)	15/309 (5%)		

TABLE 2. Percentage the High-Risk Clinical P			TABLE 3. Test Characteristics of the Ventricular Shunt Malfunc Clinical Prediction Rule for the Diagnosis of Ventricular Shu Malfunction		
Predictor	% Agreement (95% CI)	к Standard Estimates (95% CI)	Test Characteristic	n/N (%)	95% C
Historical features			Sensitivity	139/141 (98.6%)	94.4%–99
Headache	96.9% (90.0–99.2)	0.87 (0.70–1.00)	Specificity	38/579 (6.6%)	4.7%-9.0
Nausea and/or vomiting	98.6% (95.9–100)	0.97 (0.92–1.00)	NPV	38/40 (95.0%)	81.7%–99
Seizure	100% (95.2–100)	1.00 (n/a)	PPV	139/680 (20.4%)	17.5%–23

TABLE 4.	Risk of	Ventricular	Shunt N	Aalfunction	for	Patients	W
----------	----------------	-------------	---------	--------------------	-----	-----------------	---

Ventricular Shunt Malfunction High-Risk Predictors Present	No. (%) Children Without Ventricular Shunt Malfunction (N = 579)	No. (%) Children With Ventricular Shu Malfunction (N = 141)
No predictors	38 (6.6%)	2 (1.4%)
1 Predictor	246 (43%)	45 (32%)
Headache	123 (21%)	26 (18%)
Vomiting	64 (11%)	9 (6%)
Mental status change	59 (10%)	10 (7%)
2 Predictors	253 (44%)	65 (46%)
Headache, vomiting	170 (29%)	45 (32%)
Vomiting, mental status change	60 (10%)	13 (9%)
Headache, mental status change	23 (4%)	7 (5%)
3 Predictors	42 (7%)	29 (21%)
Total no. patients with ≥ 1 predictor	541 (93%)	139 (99%)

With No, 1, 2, or 3 Ventricular Shunt Malfunction Predictors

Riva-Cambrin et al, 2017 also looked at risk factors for malfunction in a multi-center prospective cohort 344/1036 experienced shunt failure, including 265 malfunctions and 79 infections

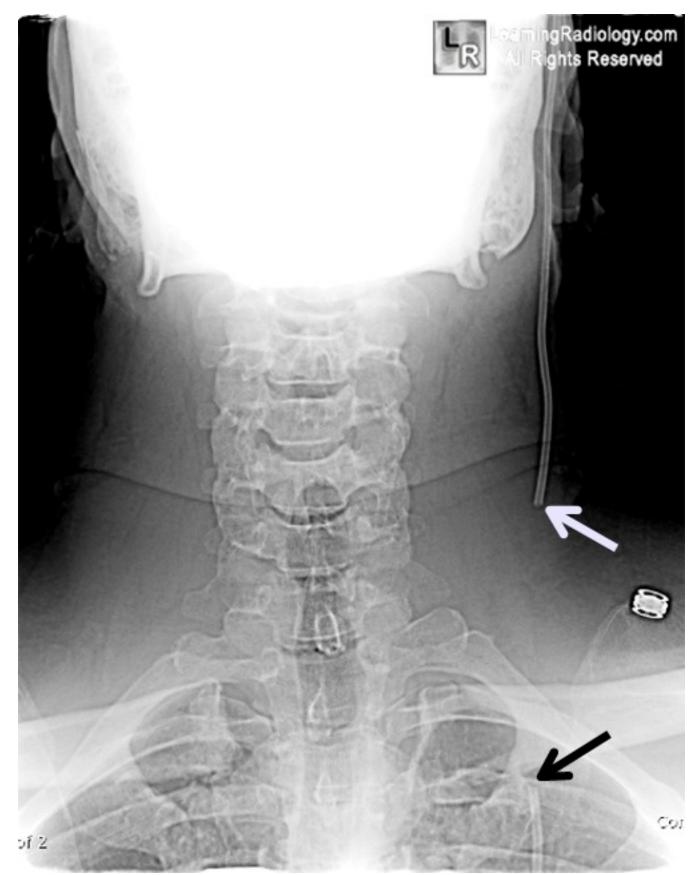
Three factors were were independently associated with reduced shunt survival

- Age younger than 6 months at shunt placement (HR 1.6 [95% CI 1.1–2.1])
- Cardiac comorbidity (HR 1.4 [95% CI 1.0–2.1])
- Endoscopic placement (HR 1.9 [95% CI 1.2–2.9])

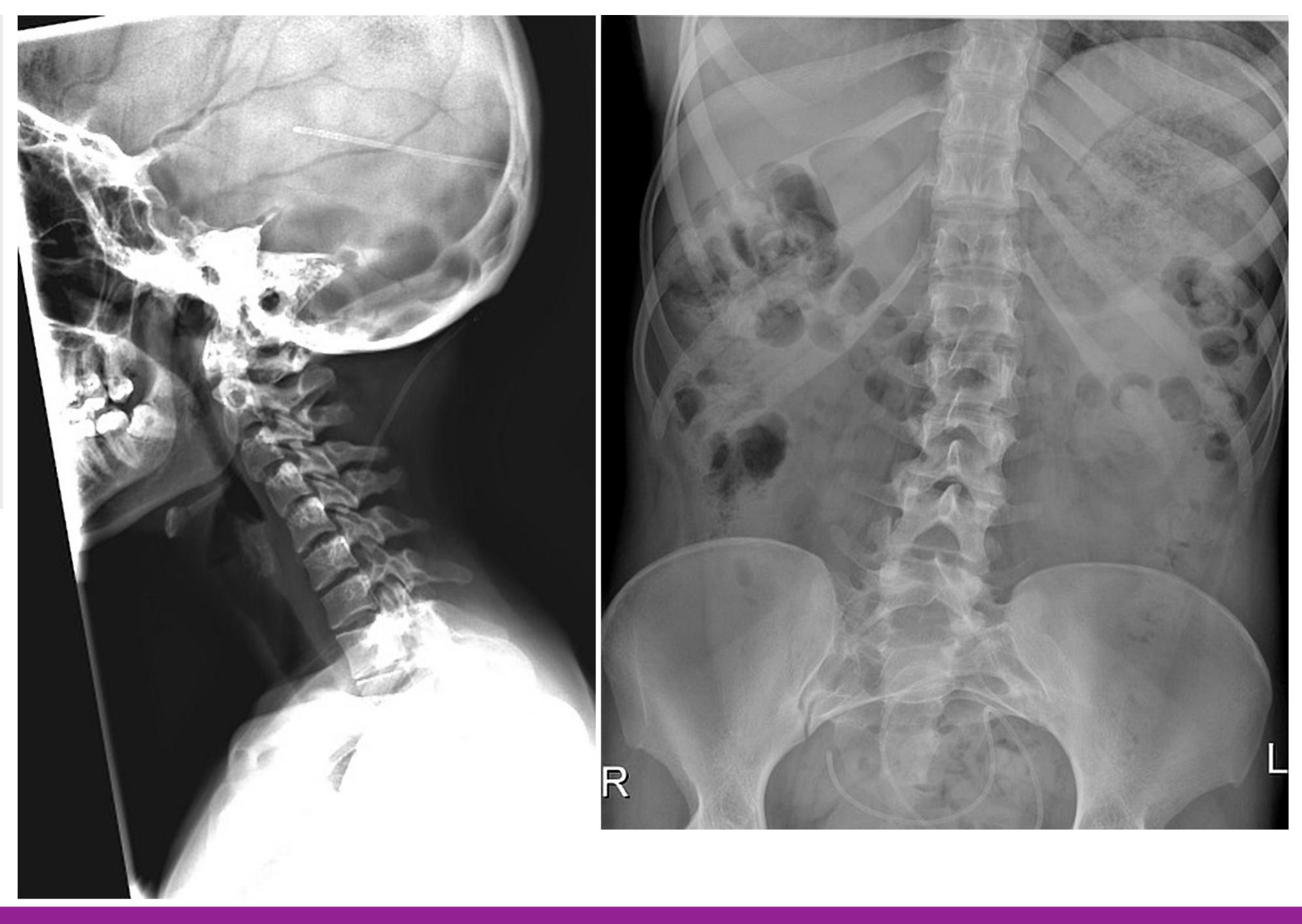
No independent associations with shunt survival

- Etiology
- Where the surgery was done
- Valve design
- Use of ultrasound or stereotactic guidance
- Surgeon experience and volume

Nafunction


Workup includes head CT and shunt series + Neurosurgery consult

Shunt series


- Radiographs of the skull, neck, chest, and abdomen
- Look for mechanical breaks, kinks, and disconnections in the shunt - most common in the neck

Nafunction

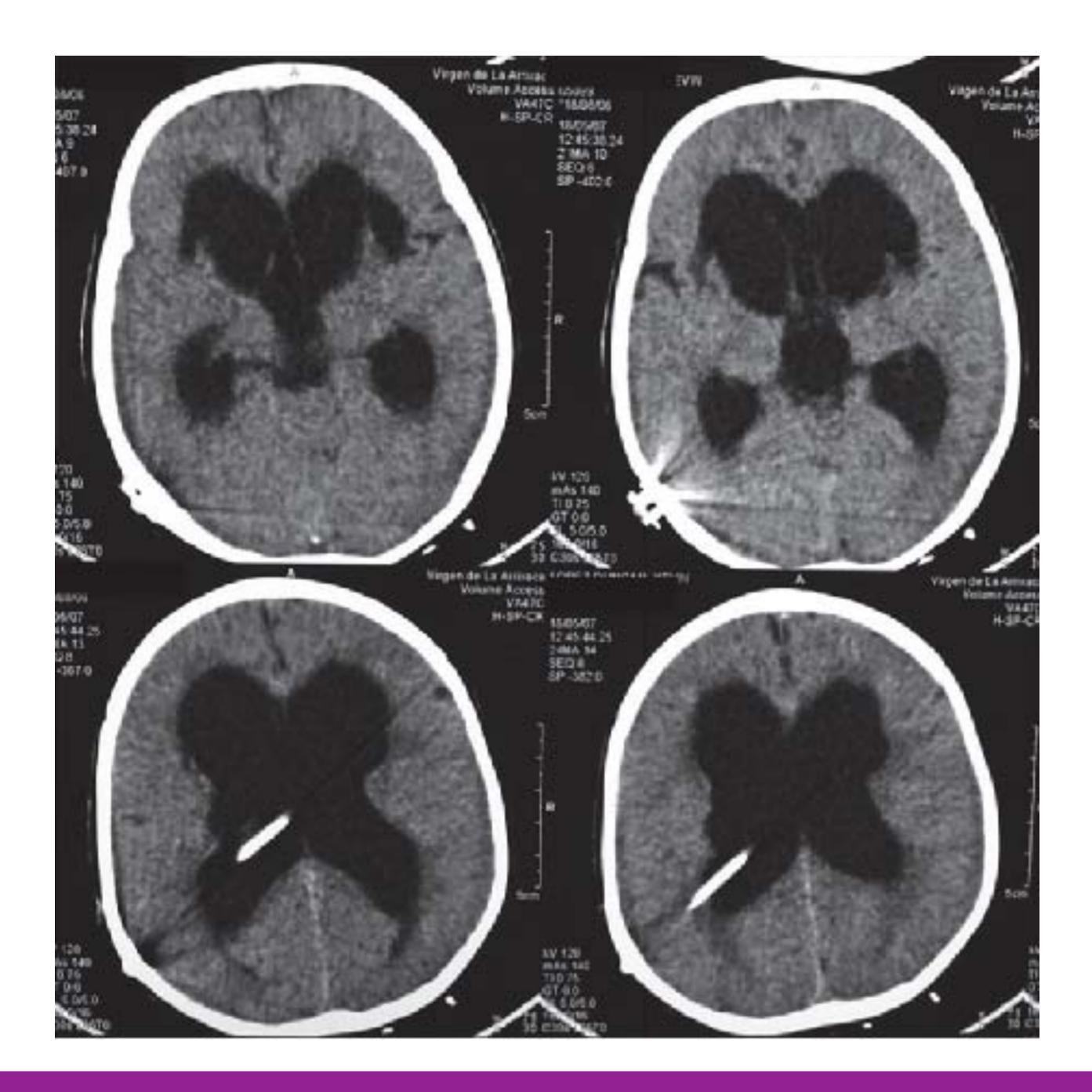
From Radiopedia

The VP shunt on the right side of the neck, seen best on the lateral neck/skull and AP neck views appears discontinuous. The shunt is not seen on the chest or abdominal wall with the remainder of the tubing is noted coiled in the abdomen.

visits)

- 78% had a shunt series
- 15% (71/291) Dx with malfunction
 - 22 of these 71 had a normal head CT
 - 6 of these 22 had an abnormal shunt series

Nafunction


Pitetti, *Pediatr Emerg Care*, 2007 – Retrospective review of 291 kids (461 ED

Head CT

Not always diagnostic - sensitivity 54-83%

Size of ventricles can help, but in up to $\frac{1}{3}$ of cases of shunt malfunction the CT is nondiagnostic (especially Chiari II/MM)

Radiographic results

Shunt series Findings associated with obstruction Disconnection of distal catheter Retraction of distal catheter tip Discontinuity near shunt bulb Any abnormality Findings not associated with obstruction Kink or coil in shunt tubing No tip movement from prior exam Head CT scan Increased ventricles since prior CT scan Possible shunt dysfunction No prior comparison CT scan Any abnormality

CT = computed tomography.

Zorc, 2002

Malfunction

TABLE 1

Results of shunt series and head computed tomography scan and clinical outcomes

Clinical outcome					
Obstruction $(n = 60)$	No obstruction $(n = 173)$	Sensitivity	Likelihood ratio		
6		100	17		
6	1	10%	17		
4	1	6%	5.5		
2	2	3%	2.8		
12	4	20%	8.6		
1	7	3%	0.82		
2	12	3%	0.48		
-		2.12	0.10		
29	8	48%	10.1		
4	6	6%	1.9		
	-				
17	27	28%	1.8		
50	41	83%	3.5		

NR

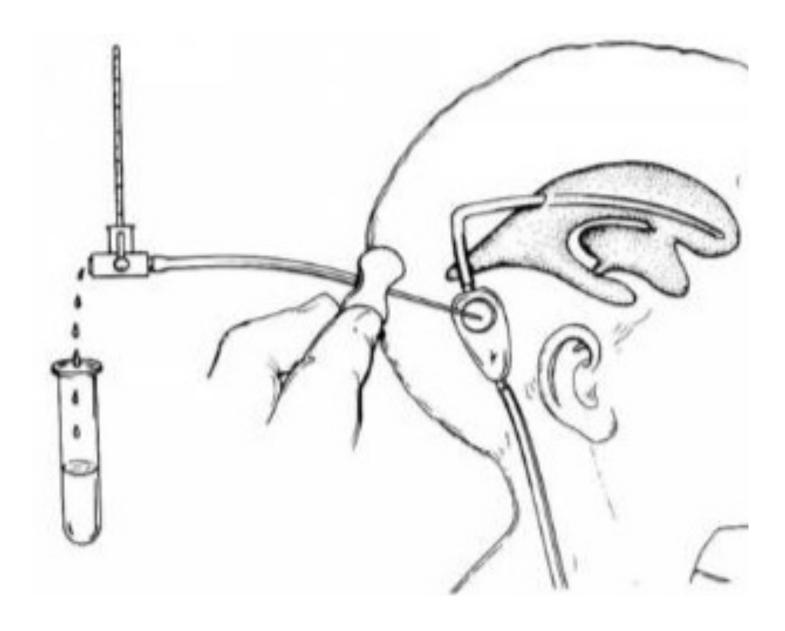
May replace CT

Protocols exist for fast MRI scans

Abdominal Ultrasound

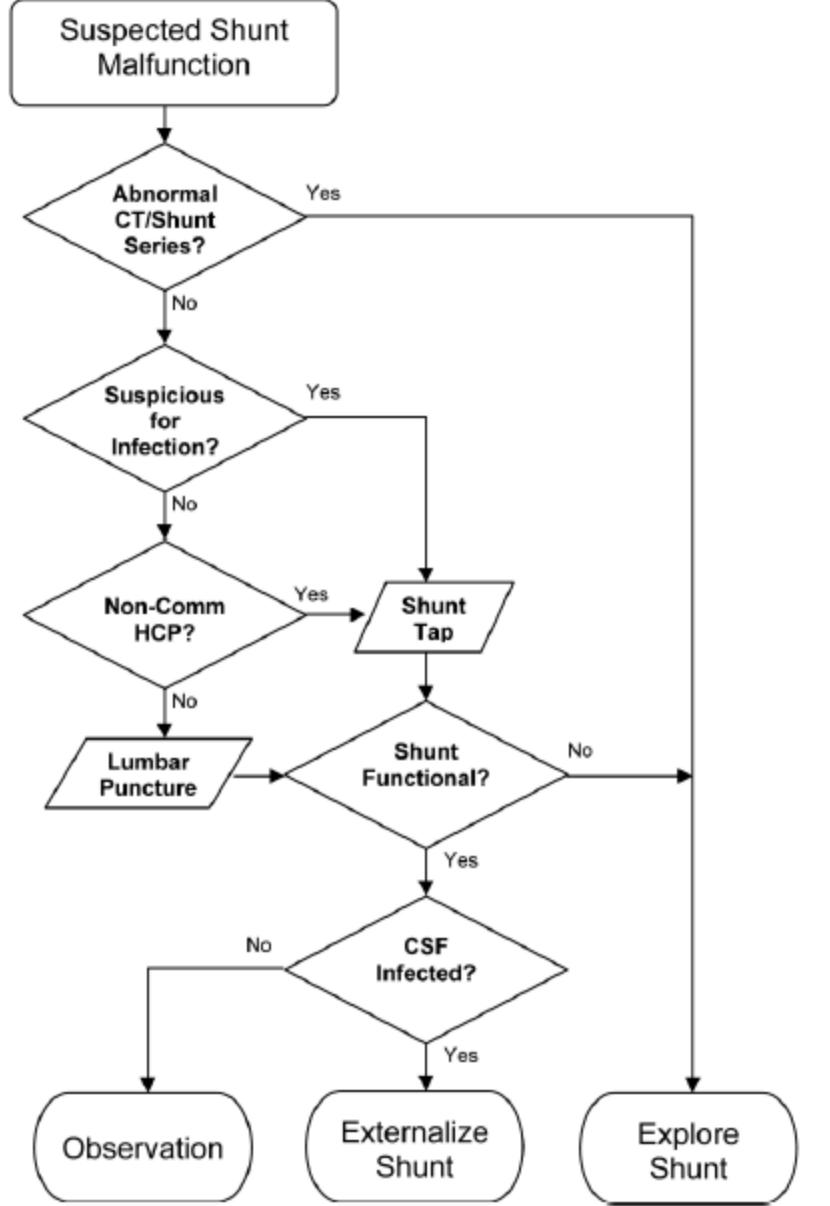
A pseudocyst is a false pocket in the abdomen at the distal end of the shunt

Fluid collects and may cause obstruction


Consider in patients with GI symptoms and concern for shunt malfunction, but usually obtained at discretion of Neurosurgeon

Shunt Tap?

- Opening pressure >25cm H₂O associated with distal obstruction in 90%
- Poor flow associated with proximal shunt in >90%


Nafunction

Shunt Tap?

Contraindications

- Skin infection over shunt site
- Coagulopathy
- Lack of shunt imaging/info

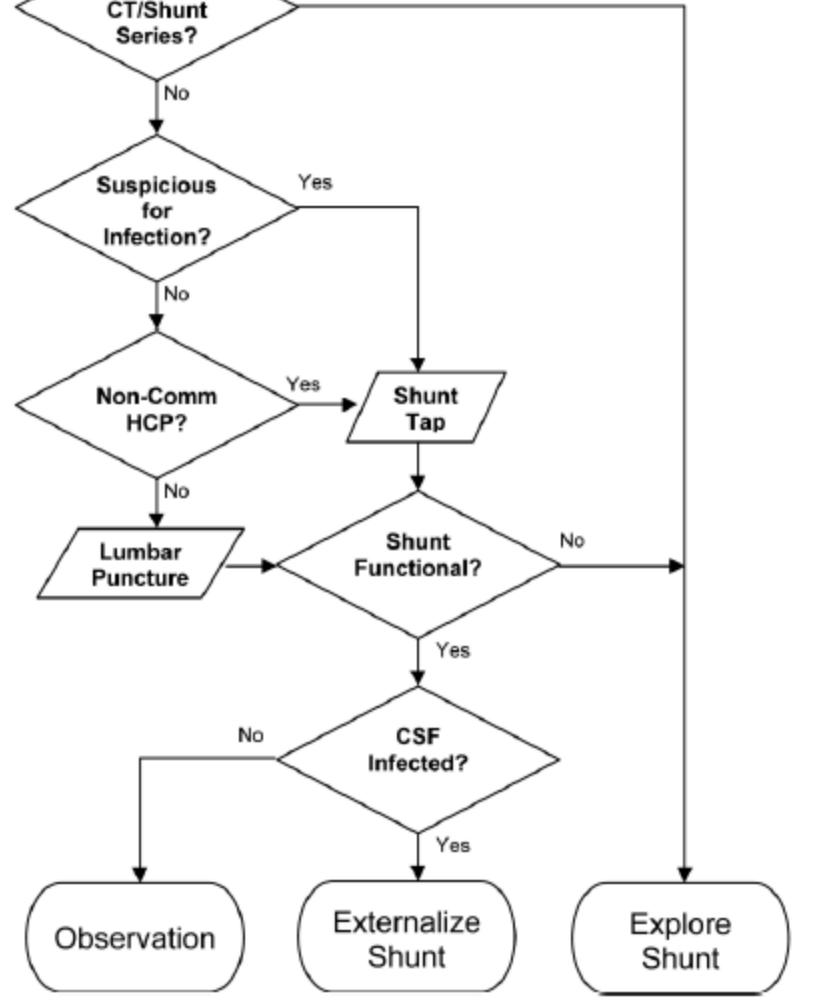


FIG. 1. Flow chart showing algorithm used for management of suspected shunt malfunction. Non-Comm HCP = non-communicating hydrocephalus.

Miller, J. Neurosurg Pediatrics 2008

ABCs

Head midline, elevated 30 degrees Manage hypoxia (sats >95%), hypercarbia, hypotension, and hypoglycemia Temperature control Mild sedation (don't cause hypotension) Control severe shivering w/ paralytics Prophylactic AEDs to patients at risk for seizures 3% Saline/Mannitol

No intervention is more important than a trip to the OR in shunt malfunctions!

Take Home Points

Shunts infections are far more common in the initial month after placement

Shunt malfunctions are usually mechanical, and proximal

Get a head CT and shunt series unless you can find another cause for the child's symptoms